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Perturbation dynamics in unsteady pipe flows
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This paper deals with perturbed unsteady laminar flows in a pipe. Three types of
flows are considered: a flow accelerated from rest; a flow in a pipe generated by
the controlled motion of a piston; and a water hammer flow where the transient is
generated by the instantaneous closure of a valve. Methods of linear stability theory
are used to analyse the behaviour of small perturbations in the flow. Since the base
flow is unsteady, the linearized problem is formulated as an initial-value problem.
This allows us to consider arbitrary initial conditions and describe both short-time
and long-time evolution of the flow. The role of initial conditions on short-time
transients is investigated. It is shown that the phenomenon of transient growth is
not associated with a certain type of initial conditions. Perturbation dynamics is also
studied for long times. In addition, optimal perturbations, i.e. initial perturbations
that maximize the energy growth, are determined for all three types of flow discussed.
Despite the fact that these optimal perturbations, most probably, will not occur in
practice, they do provide an upper bound for energy growth and can be used as
a point of reference. Results of numerical simulation are compared with previous
experimental data. The comparison with data for accelerated flows shows that the
instability cannot be explained by long-time asymptotics. In particular, the method
of normal modes applied with the quasi-steady assumption will fail to predict the
flow instability. In contrast, the transient growth mechanism may be used to explain
transition since experimental transition time is found to be in the interval where
the energy of perturbation experiences substantial growth. Instability of rapidly
decelerated flows is found to be associated with asymptotic growth mechanism.
Energy growth of perturbations is used in an attempt to explain previous experimental
results. Numerical results show satisfactory agreement with the experimental features
such as the wavelength of the most unstable mode and the structure of the most
unstable disturbance. The validity of the quasi-steady assumption for stability studies
of unsteady non-periodic laminar flows is discussed.

1. Introduction
The study of unsteady fluid flows in pipes is important for a wide range of

applications such as design and analysis of water supply, natural gas and pressurized
sewerage pipeline systems, analysis of transient-induced water quality problems in
water supply lines, study of transient-based inverse modelling for the purposes of
calibration and/or leakage detection in pipes, investigation of sloughing-off and the
fate of bio-film during transient events in water and sea-water pipelines and analysis
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of blood flow in arteries. Fluid transients in water supply and natural gas pipelines
can be generated by actions such as pump starts and valve opening. The steady
flow of much of these applications belong to the highly turbulent regime. However,
during unsteady events, the flow regime often undergoes transition from the laminar
to the turbulent regime or vice versa. For example, a sudden start of the flow by,
say, turning on a pump takes the flow through all stages: from laminar flow to the
transition from laminar to turbulent flow and eventually to a steady-state highly
turbulent flow. On the other hand, sudden flow deceleration by, say, pump failure
can take the flow from the fully turbulent regime to the laminar regime. Pressures
triggered by flow unsteadiness are known to cause rupture of pipelines, damage to
other hydraulic devices and fire-related damage in the case of natural gas pipelines
(Wylie & Streeter 1993). The pressure in unsteady flow can also acquire values low
enough to cause cavitation, pitting and corrosion, and the intrusion of contaminants
through cracks and joints (Brunone et al. 2000). Water quality in supply lines can
be affected following a transient event as bio-film on the pipe is sloughed off by the
large shear stresses created by the transient, and particulates may be re-suspended by
the strong mixing of the flow inside a pipe. In addition, blood-flow unsteadiness can
result in atherosclerosis plaque development in regions where the shear stress changes
direction (Waters & Pedley 1999).

Temporal linear stability theory reveals that unsteady pipe flows are susceptible
to two types of instability, namely, exponential instability and transient instability
(von Kerczek 1982; Schmid & Henningson 2001). Exponential instability may occur
if there is a favourable range of parameters for which one or more normal modes
(travelling waves) can grow exponentially. The study of exponential growth or decay
of instabilities is restricted to providing the long term behaviour (i.e. as time tends
to infinity) of the most dominant mode. The transient growth instability is related
to the fact that the superposition of normal modes may initially experience a large
growth even when each of the modes is decaying and is due to the non-orthogonality
of the eigenvectors of the linear operator and is intimately linked to the lift-up of
streamwise vortices. The transient growth can be large enough to cause transition to
either another laminar state or to a turbulent state, rendering the exponential stability
a moot point (Criminale et al. 1997; Schmid & Henningson 2001); thus, the name
bypass instability.

Much of the work on the linear stability of unsteady pipe flows in pipes and channels
has concentrated on the investigation of the exponential instability mechanism
through the use of the method of normal modes (e.g. Hall 1975; Hino, Sawanoto &
Takasu 1976; Hall & Parker 1976; Yang & Yih 1977; von Kerczek 1982; Das &
Arakeri 1998; Ghidaoui & Kolyshkin 2002). Such studies have determined the main
parameters governing the exponential instability of time-dependent pipe flows and
established the ranges of parameters where perturbations grow exponentially. The
conditions under which properties of flow unsteadiness, such as amplitude and
frequency for the case of oscillatory flows and flow acceleration or deceleration for
the case of non-periodic flows, promote or suppress the exponential instability have
been investigated. Reasonable quantitative agreement between the critical parameters
associated with the exponential instability and experiments has been found, especially
for problems when the base flow is rapidly decelerated and contains inflection points
(Das & Arakeri 1998).

The use of the method of normal modes to investigate the susceptibility of time-
dependent pipe flows to exponential instability is a natural starting point in stability
theory. However, previous studies (see, for example, Schmid & Henningson 2001
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and references therein) indicated that, in some cases, the method of normal modes
gives only a partial description of the linear perturbation equations. In addition, the
application of the method of normal mode analysis to time-dependent flows usually
requires the adoption of the quasi-steady assumption.

These limitations associated with the method of normal mode analysis can be
overcome by investigating the time evolution of infinitesimal perturbations as an
initial-value problem. The solution of the initial-value problem provides the evolution
of perturbations for all time, thus, allowing the investigation of the behaviour of
disturbances during the initial transient growth phase as well as the long-term
asymptotic phase. The transient growth phase is crucial for understanding (i) the
behaviour of perturbations in flows that are deemed unconditionally stable by the
method of normal modes such as steady pipe flow; (ii) the subcritical instability in
flows that are known to experience transition in regimes where the flow is deemed
stable by the method of normal modes such as steady channel flow; and (iii) the
bypass transition in flows that are known to develop streaks and undergo transition
well before the exponential instability has a chance to set in. The initial-value problem
approach has been successfully applied to a wide range of steady-flow problems (e.g.
Lasseigne et al. 1999; Corbett & Bottaro 2000; Schmid 2000; Schmid & Henningson
2001). Von Kerczek (1982) has shown that some time-dependent flows can also exhibit
significant transient growth. In particular, he found that the transient behaviour of
perturbations can cause the flow to undergo transition even though the long-term
average growth of perturbations is small. Transient growth, which occurs for small
values of time, may lead to the rapid instability observed in the unsteady pipe flow
experiments of Lefebvre & White (1989), Brunone et al. (2000) and Greenblatt &
Moss (2003). Note, however, that by-pass transition mechanism requires nonlinearity.
The linearized stability equations describe only the initial stage of the development
of instability.

The transient growth mechanism depends on the form of the initial perturbation.
Various methods can be used in order to optimize the initial perturbation and obtain
maximum transient growth amplification. Butler & Farrell (1992), Bergström (1993),
Reddy & Henningson (1993) and Schmid & Henningson (1994) studied different
aspects of the transient growth of the optimal perturbations in plane channel flow
and pipe Poiseuille flow.

The present paper is devoted to the linear stability analysis of time-dependent
base flows in a pipe. The flows considered are those studied experimentally by
Lefebvre & White (1989) and Das & Arakeri (1998) as well as the water hammer
flow (Hall & Parker 1976). The first two papers contain the data required to allow
comparison between linear stability theory and experiments. The stability analysis
is based on the solution of the initial-value problem obtained by linearizing the
Navier–Stokes equation in the neighbourhood of the base flow and adopting a
Fourier decomposition in the longitudinal and azimuthal directions. The initial-value
problem provides the behaviour of perturbations for all time. The sensitivity of the
time behaviour of perturbations to the initial conditions is investigated. In addition,
optimal perturbations which give the upper limit of the energy growth are also
computed and used as a point of reference.

The stability results are compared with the experimental findings of Lefebvre &
White (1989) and Das & Arakeri (1998). It is shown that the transient growth
phase is essential in explaining the transition observed in some of the experiments,
especially for non-inflectional time-dependent base flows. The resolution of the time
behaviour of perturbations is also instrumental in developing criteria to explain why
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Figure 1. Velocity profiles for accelerated flows (Lefebvre & White 1989). (a) Case 1: the
Reynolds number based on mean velocity and diameter is ReD = 2.4 × 105 and (b) Case 2: the
Reynolds number based on mean velocity and diameter is ReD = 5.2 × 105).

the experiments of Das & Arakeri (1998) show that flow instability does not always
lead to turbulence.

2. Formulation of the stability model
2.1. Base flows

A general axisymmetric one-dimensional flow field in a circular pipe has the following
generic form,

W̃ = W̃ (r̃ , t̃), P̃ = P̃ (z̃, t̃), (1)

where t̃ is dimensional time, z̃ is the dimensional axial coordinate, r̃ is the dimensional
radial coordinate, W̃ is the dimensional flow velocity along axial direction and P̃

is dimensional pressure. This base flow is the solution of the following equation
(Schlichting 1979),

∂W̃

∂t̃
= − 1

ρ

∂P̃

∂z̃
+ ν

(
∂2W̃

∂r̃2
+

1

r̃

∂W̃

∂r̃

)
, (2)

where ρ is the density of the fluid; ν is the kinematic viscosity of the fluid.
Three types of transient flows are analysed in this paper, namely, flow accelerated

from rest (Lefebvre & White 1989), unsteady flows with acceleration and deceleration
phases generated by the motion of a piston (Das & Arakeri 1998) and water hammer
flows (fully developed laminar flows subject to rapid deceleration). The velocity
profiles in accelerated flows do not contain inflection points whereas in the cases
of rapidly decelerated flows the velocity distribution has inflection points present
throughout the deceleration phase.

The base flow velocity profiles for the case of flow accelerated from rest (Lefebvre &
White 1989) are obtained from analytical solution given by Gromeka (1882) whose
solution was later reproduced by Szymanski (1932). The velocity profiles for two
selected cases (hereinafter referred to as Case 1 and Case 2) are plotted in figure 1.
Case 1 defines the problem for which the Reynolds number Re based on mean
velocity and diameter is 2.4 × 105 and the measured dimensionless transitional time
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Case t̃0 (s) t̃1 (s) t̃2 (s) t̃p (s) Up (m s−1) Re = UpR/ν

I 0.13 10.26 10.27 19.2 0.054 684
II 0.42 3.68 4.04 6.24 0.16 2036.5

III 0.14 1.86 2.46 2.76 0.33 4251
IV 0.13 0.44 1.10 1.80 0.33 4251

Table 1. Parameters of the experiments reported by Das & Arakeri (1998).

is t̂ = t/Re =0.0032. Case 2 defines the problem for which the Reynolds number
based on mean velocity and diameter is 5.2 × 105 and the measured dimensionless
transitional time is t̂ = t/Re = 0.00105.

Das & Arakeri (1998) studied another type of transient flow. The test rig consisted
of a pipe–piston system. The flow of an incompressible fluid (water) was generated
as follows: the velocity of the piston linearly increases from zero to some constant
velocity Ũp for 0 < t̃ < t̃0, maintains a constant value Ũp for t̃0 < t̃ < t̃1, linearly
decreases to zero for t̃1 < t̃ < t̃2, and maintains a velocity of zero for t̃ > t̃2. The
values of t̃0, t̃1, t̃2 and Ũp for each of the four cases considered are given in table 1.

The term Ũp is used as the velocity scale in this case. This table also includes the
experimentally observed time t̃ p at which the instability sets in and the values of

the Reynolds number based on Ũp and the radius of the pipe. In this case, Das &
Arakeri (1998) found an analytical solution for the velocity distribution in terms of
an infinite series containing Bessel functions. The velocity profiles for the four cases
reported in table 1 are plotted in figure 2.

Finally, the base flow profiles for laminar flows in a reservoir–pipe–valve system,
where the transient is triggered by an instantaneous closure of the valve, are derived
by Hall & Parker (1976) using a type of Pohlhausen technique and by Ghidaoui &
Kolyshkin (2001, 2002) using the method of Laplace transform. If the flow before
the sudden blockage was steady pipe Poiseuille flow, then the solution obtained by
Ghidaoui & Kolyshkin (2002) has the form

W (r, t̂) =

∞∑
n=1

2J1(βn) − βnJ0(βnr)

β2
nJ1(βn)

exp
(
−β2

n t̂
)
, (3)

where t̂ = t/Re; Jm(q) is a Bessel function of the first kind of order m; and βn are
the roots of the equation J2(βn) = 0. Here and in the rest of the paper the variables
without tildes are dimensionless variables such that the measures of length, time,
pressure and velocity are R, R/Ũc, ρŨ 2

c and Ũ c, respectively, where Ũ c is the velocity
at the axis of the pipe for steady state and R is the radius of the pipe; the Reynolds
number is defined by the formula Re = RŨc/ν. To avoid confusion, ReD is used to
denote the Reynolds number based on mean velocity and pipe diameter.

The linear stability of three types of base flow discussed above is studied in this
paper. The results of numerical simulation are compared with the experimental data
of Lefebvre & White (1989) and Das & Arakeri (1998).

2.2. Stability, perturbation equations and solution procedure

We seek to study the stability of the unsteady one-dimensional non-periodic base
flows discussed in the previous section. Recall that the base flow W (r, t) and
P (z, t) represent the dimensionless solution of (2) subject to appropriate boundary
conditions such as valve closure or valve opening and to initial condition W (r, 0)
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Figure 2. Base flow profiles for decelerated flows (Das & Arakeri 1998). (a) Case I,
(b) Case II, (c) Case III, (d) Case IV.

and P (z, 0). Let W (r, t)k + u(x, t) and P (r, t) + p(x, t) denote the solution of the
Navier–Stokes equations subject to the perturbed initial condition W (r, 0)k + u(x, 0)
and P (r, 0) + p(x, 0), where x =(r, θ, z), θ is the azimuthal coordinate, z is the
longitudinal (streamwise) coordinate, k is the unit vector in the longitudinal direction,
u(x, t) = (u(r, θ, z, t), v(r, θ, z, t), w(r, θ, z, t)) is the velocity field of the perturbation,
and u(x, 0) = (u(r, θ, z, 0), v(r, θ, z, 0), w(r, θ, z, 0)) is the initial (imposed) velocity
perturbation. Note that u(x, t), being the difference between the base field and the
perturbed field, describes how far the perturbed field is from the base flow. Stability
is achieved if u(x, t) is found to die away with time so that the perturbed field
eventually returns to the base field. A measure of how far has the perturbed velocity
field departed from the base flow field at time t over volume [0, 1]× [0, 2π]× [0, 2π/α]
is given by the following norm of u(x, t):

〈|u|2〉 =
1

V—

∫ 2π/α

0

∫ 2π

0

∫ 1

0

u · ur dr dθ dz =
1

V—

∫ 2π/α

0

∫ 2π

0

∫ 1

0

(u2 + v2 + w2)r dr dθ dz

(4)
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where V— = 4π2/α. The norm given by (4) is twice the average kinetic energy, E(t),
over volume [0, 1] × [0, 2π] × [0, 2π/α] (i.e. E(t) = 〈|u|2〉/2). Note that this volume
defines a pipe section whose streamwise length is equal to one full wave length 2π/α.

The evolution of the volume-averaged kinetic energy of perturbation (disturbance)
is given by (e.g. Joseph 1976; Schmid & Henningson 2001)

dE

dt
=

1

V—

∫ 2π/α

0

∫ 2π

0

∫ 1

0

uv
dW

dr
r dr dθ dz − 1

ReV—

∫ 2π/α

0

∫ 2π

0

∫ 1

0

∇u · ur dr dθ dz (5)

where ∇ is the gradient operator in cylindrical polar coordinates. Clearly, the norm
of difference between the base field and the perturbed field, measured by a volume-
averaged kinetic energy, depends on Reynolds number, the exchange of energy
between the base flow and the perturbations and the dissipation of perturbations by
viscous effects.

The behaviour of E(t), which is a measure of the deviation of the perturbed field
from the base field, is central to the investigation of the stability of the base flow
W (r, t) and P (z, t). Evaluation of the right-hand side of (5) requires the solution of
the equations which give the perturbation field u(x, t) = (u(r, θ, z, t), v(r, θ, z, t),
w(r, θ, z, t)) subject to boundary conditions and initial conditions u(x, 0) =
(u(r, θ, z, 0), v(r, θ, z, 0), w(r, θ, z, 0)). To this end, using the Navier–Stokes equations
and considering that the infinitesimal perturbations are

[u(r, θ, z, t); v(r, θ, z, t); w(r, θ, z, t); p(r, θ, z, t)]T

= [û(r, t); v̂(r, t); ŵ(r, t); p̂(r, t)]T exp(inθ + iαz) (6)

where α is the axial wavenumber; n is the azimuthal wavenumber; and û, v̂, ŵ, p̂ are
the amplitudes of perturbation corresponding to u, v, w, p, respectively, we obtain

1

r

∂(rû)

∂r
+

in

r
v̂ + iαŵ = 0 (7)

∂û

∂t
+ iαWû = −∂p̂

∂r
+

1

Re

(
Nû − û

r2
− 2in

r2
v̂

)
(8)

∂v̂

∂t
+ iαWv̂ = − in

r
p̂ +

1

Re

(
Nv̂ − v̂

r2
+

2in

r2
û

)
(9)

∂ŵ

∂t
+ iαWŵ + û

∂W

∂r
= −iαp̂ +

1

Re
Nŵ (10)

where

N =
∂2

∂r2
+

1

r

∂

∂r
− n2

r2
− α2.

The boundary conditions at the wall r = 1 are

û(1, t) = 0, v̂(1, t) = 0, ŵ(1, t) = 0,
∂û(r, t)

∂r

∣∣∣∣
r=1

= 0. (11)

The boundary conditions at the pipe centreline depend on the azimuthal wave-
number and have the form (for details see Moin & Kim 1980; Lopez, Marques &
Shen 2002).
For n = 0,

û(0, t) = 0, v̂(0, t) = 0, ŵ(0, t) ≡ finite, p̂(0, t) ≡ finite. (12)
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For n = 1,

û(0, t)+iv̂(0, t) = 0, ŵ(0, t) = 0, p̂(0, t) = 0,

[
∂û(r, t)

∂r
+i

dv̂(r, t)

dr

]∣∣∣∣
r=0

= 0. (13)

For n = 2, 3, . . . ,

û(0, t) = 0, v̂(0, t) = 0, ŵ(0, t) = 0, p̂(0, t) = 0. (14)

The behaviour of the velocity field of perturbations u(x, t) = (u(r, θ, z, t), v(r, θ, z, t),
w(r, θ, z, t), as well as the kinetic energy of perturbations depend on the perturbation
imposed at t = 0, namely, u(x, 0) = (u(r, θ, z, 0), v(r, θ, z, 0), w(r, θ, z, 0). The role of
initial conditions on the perturbation dynamics of small disturbances in a plane
Poiseuille flow is discussed in Criminale et al. (1997). They used different initial condi-
tions (symmetric, antisymmetric, localized or more spread across the channel) in order
to analyse the growth of perturbation energy for different times. One of the objectives
of their paper was to determine whether the large optimal transient growth obtained in
the previous studies could be realized by arbitrary initial conditions. The calculations
presented in Criminale et al. (1997) show that the calculated transient growth for
arbitrary initial conditions for two-dimensional disturbances in plane Poiseuille flow
is found to be about 25 % of the optimal.

Two approaches are used in the present paper to analyse the behaviour of small
perturbations in unsteady pipe flows. First, arbitrary disturbances in an unforced
media are simulated by means of uncorrelated random initial conditions. The
calculations are done for different initial conditions. In addition, the sample average is
analysed as well. The use of different random initial conditions will also help to answer
the question of whether the transient growth is associated with only certain initial
conditions. Secondly, optimal perturbations are also considered in order to obtain
maximum transient growth amplification. Following the conclusions from Criminale
et al. (1997), it is plausible to assume that, most probably, the large optimal transient
growth does not take place in practice unless a carefully controlled perturbation
generator is used. However, the optimal energy growth curve is usually considered as
a reference point and serves as the basis for discussion related to the bypass transition
scenario. If the optimal energy growth is large enough, then there is a possibility of
the bypass transition.

Optimal initial perturbations have been extensively studied by Butler & Farrell
(1992) for plane channel flow and Bergström (1993) and Schmid & Henningson
(1994) for pipe Poiseuille flow. In these studies, the initial condition that can achieve
maximum amplification of initial energy is searched for. The maximum transient
growth at α =0 and n= 1 produced by optimal initial perturbation is about E(t)/
E(0) = 7 × 10−5 Re2, at time t = 0.048Re, as obtained by Schmid & Henningson (1994)
for the case of pipe Poiseuille flow, which is essentially the same as that produced by
the initial condition of Bergström (1992).

The growth of a perturbation at a particular time tp can be described by the
function G(tp) = E(tp)/E(0) if the base flow and initial perturbations û(r, 0), v̂(r, 0)
and ŵ(r, 0) are specified. Variational techniques are used by Butler & Farrell (1992)
and Bergström (1993) to investigate the optimal growth for plane Poiseuille, Couette,
Blasius and pipe Poiseuille flows. For example, Bergström (1993), in a study of a pipe
Poiseuille flow, represented an arbitrary disturbance as a sum of damped modes of
the system and then used the variational principle to calculate the largest possible
amplification of the energy at time tp .
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In the present study, it is not proper to express the pertrurbation in terms of
eigenmodes since the base flow is unsteady. The approach which is based on a
nonlinear optimization is employed below. For a given set of initial values û(r, 0),
v̂(r, 0) and ŵ(r, 0) we calculate G(tp) using the initial-value problem solver. Thus,
G(tp) is a nonlinear function of û(r, 0), v̂(r, 0) and ŵ(r, 0). Our goal is to find û(r, 0),
v̂(r, 0) and ŵ(r, 0) in order to maximize G(tp) at time tp . This is a typical nonlinear
optimization problem which we solve by means of DOT (design optimization tools)
software developed by Vanderplaats Research & Development. A finite-difference
approach is used by DOT in order to provide the gradients required to change the
decision variables and optimize the object function G. The use of finite differences
is particularly useful since the derivatives of the object function with respect to the
decision variables cannot be calculated analytically. Three types of search strategy
are used, namely, a modified feasible directions algorithm, a sequential linear pro-
gramming method and a sequential quadratic programming method. It is found that
all three methods converge to the same optimal initial conditions, the only difference
is the rate of convergence. All the results generated in the paper are obtained by
means of a modified feasible directions algorithm and a sequential linear programming
method.

System (7)–(10) is solved using a semi-implicit scheme (Moin & Kim 1980). The
convective terms are approximated by the second-order Adams–Bashforth scheme
while the second-order Crank–Nicolson scheme is used for viscous and pressure
terms. Chebyshev polynomials are used for discretization in the radial direction.
Details of the numerical scheme are described in Zhao, Ghidaoui & Kolyshkin
(2004). The study of the complete perturbation dynamics and the analysis of both
short-time and long-time transients can now be investigated as an initial-boundary
value problem, where (7)–(10) is solved subject to boundary conditions (11)–(14) and
to different initial conditions ranging from random to optimal. Using this approach,
we can trace the evolution of any small perturbation in the flow. The procedure of
solving the perturbation equations by numerical integration is hereinafter referred to
as linearized direct numerical simulation (L-DNS).

3. Results and discussion
We begin by validating the linear model against published results such as those in

Schmid & Henningson (1994). Schmid & Henningson (1994) calculated the transient
growth for pipe Poiseuille flow and provide detailed results for Re = 1000 and
wavenumbers α = 0, n =1. It should also be noted that α = 0 and n= 1 are known
to produce the maximum temporal growth of perturbations in pipe flow (Ben-Dov,
Levinski & Cohen 2003; Schmid & Henningson 1994). The current model is applied
to the same conditions as those in Schmid & Henningson (1994), and the results are
presented in figure 3. The energy evolution curves are plotted for different random
initial conditions together with the averaged result (solid line). The dotted lines
represent each of the 25 samples used in the simulation. In addition, the optimal
growth curve (dashed line) is also shown for comparison. The behaviour of the
growth curves is similar to the behaviour of the optimal perturbations except that
the maximum growth for the averaged result based on random initial conditions
(E(t)/E(0) = 1.65 × 10−5Re2) is about a quarter of the optimal growth. The maximum
amplification factor is 71.9 which is close to the value of 72 calculated by Schmid &
Henningson (1994). The maximum growth occurs at time t =0.049Re (the maximum
growth for the averaged result occurs a little earlier at time t = 0.048Re). The
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Figure 3. (a) Transient growth of random initial conditions and optimal initial condition
for Poiseuille flow (Re= 1000, α =0, n= 1). (b) Optimal initial perturbations û(r, 0), v̂(r, 0) and
ŵ(r, 0) versus r which produces maximum G at t = 49.

simulation results in figure 3 show that transient growth is not associated with a
particular type of initial perturbation. In addition, figure 3(b) shows that the axial
component of the optimal initial perturbation is almost zero in agreement with the
results obtained by Schmid & Henningson (1994).

The dependence of the norm of perturbations on initial conditions û(r, t = 0),
v̂(r, t =0), ŵ(r, t = 0) is analysed as follows. A random number from a standardized
normal distribution is generated for û(r, t = 0), v̂(r, t = 0), ŵ(r, t = 0) at each radial
node. Only those initial conditions that are divergence free are considered as initial
conditions for the linear initial boundary-value problem. The divergence-free initial
condition is obtained as follows. A random velocity field is generated. Since it is
unlikely that this random field is divergence free, a process to render it divergence
free (i.e. to ensure that the initial field satisfies mass balance) is required. The inviscid
form of (7)–(10) and the non-divergent randomly generated velocity field are solved.
During this solution, the pressure terms redistribute the random velocity field and
if the model is run for a long enough time, the flow redistribution will ensure
that the flow field satisfies mass (i.e. divergence-free velocity field) and momentum.
The resulting divergence-free field constitutes the initial perturbation which when
solved together with (7)–(10) and (11)–(14) provides a complete solution for how the
perturbations behave with time.

Different values of n and α are used for the analysis of water hammer flow.
Linear stability calculations with a quasi-steady assumption by Ghidaoui & Kolyshkin
(2001) show that (i) the least stable mode for all times tested is the mode with
n=1, and (ii) that the critical wavenumbers vary from α = 1.2 to α = 1.6 in the
interval 0.001 � t̂ � 0.02, which contains the ‘least stable’ velocity profile. Taking this
information into account, the results are presented for n= 1 and α = 1.5. Figure 4(a)
is plot of energy growth curves of a perturbation for the least stable modes. The
instantaneous slopes of the curves are the growth rates of perturbation energy for the
instantaneous velocity profile, that is,

GE(t) = lim
�t→0

lnE(t + �t) − lnE(t)

�t
(15)
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Figure 4. Growth behaviour of perturbations for water hammer flow
(Re= 2000, α = 1.5, n= 1), (a) growth and (b) growth rate for different initial conditions.
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Figure 5. (a) Amplitudes of optimal initial perturbations as a function of r which maximize
G at t = 300 and (b) transient growth for the optimal perturbation for water hammer flow
(Re= 2000, α = 1.5, n= 1).

It can be seen from the figure that energy growth curves behave differently for small
times (t < 40), but for t > 40, the growth curves are essentially parallel to each other
(that is, the slopes of the tangent lines to all three curves are almost the same for large
times). This is also shown in figure 4(b). For t < 40, the growth rates for different
initial conditions are not the same, but for t > 40, the dependence of the growth
rates on the initial condition disappears and different initial conditions give the same
growth rates.

Although the growth rates for large times are independent of initial condition, the
total energy at time t depends on the initial condition since it is proportional to the
integral of the growth rates evaluated from t =0 to time t . Figure 4(a) also shows
that the maximum perturbation energy with one initial condition can differ from that
with another initial condition by a factor of 10 or 20.

Optimal initial conditions for waterhammer flow with Re = 2000 and α = 1.5
together with the optimal energy growth curve are shown in figure 5. It is seen
from figure 5 that qualitative behaviour of the optimal growth curve for large times
is similar to the behaviour of the growth curves for different initial conditions (see
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measured transitional time is t̂ = 0.0032). (a) Bergström initial condition and (b) random initial
condition.

figure 4). However, depending on the initial condition, the magnitude of energy growth
can differ by a factor of 100 from the optimal case.

3.1. Flow stability of accelerated flows

Henningson & Reddy (1994) and Schmid & Henningson (2001) show that the
kinetic energy of infinitesimal perturbations (linear analysis) and of finite-amplitude
perturbations (nonlinear analysis) obey the same relation, namely, equation (5). This
is because the nonlinear terms are conservative and their role is to redistribute the
energy between different spatial scales. As a result, they argued that the growth
rate of a large-amplitude perturbation at instant t is equal to that of an infinitesimal
perturbation whose shape is identical to the large-amplitude perturbation and showed
that linear mechanisms in the form of exponential, algebraic or transient growth are
necessary conditions for flow transition. The more substantial is the transient energy
growth of a given flow, the more likely that this flow exhibits transition to a turbulent
state or to a different, often more complex, laminar state. The transient growth and
its role in the stability of accelerating as well as decelerating flows in pipes are studied
in the remainder of this paper.

Stability of laminar flows in a pipe subject to a rapid acceleration is studied
experimentally by Lefebvre & White (1989). In their study, a control valve is used to
create a constant acceleration from rest to a certain mean velocity. The measured shear
stress traces show bursts indicating transition during the acceleration. Experimental
transition times and transition Reynolds numbers are obtained in their experiments.

We study the evolution of a perturbation by solving the corresponding initial-
value problem. The energy growth of perturbations with different axial wavenumbers
is shown in figure 6(a) when the Bergström (1992) initial condition is used. The
parameters of the flow correspond to the experimental data of Lefebvre & White
(1989). In particular, two cases are investigated in this paper. Case 1 correspond to
a diameter-based Reynolds number of 2.4 × 105. The measured transition time t̂ for
Case 1 is about 0.0032. Case 2 correspond to a diameter-based Reynolds number of
5.2 × 105. The measured transition time t for Case 2 is about 0.00105.
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Figure 7. Perturbation growth for accelerated flow (Lefebvre & White 1989; Case 2 where
the Reynolds number based on mean velocity and diameter is ReD = 5.2 × 105 and the
measured transitional time is t̂ = 0.00105). (a) Bergström initial condition and (b) random
initial condition.

The computations were carried out for a variety of wavenumber α and n. We
found that n= 1 and α = 0 are the most unstable in the sense that, for given initial
and boundary conditions, the largest transient growth was obtained when n= 1 and
α = 0. It is seen from figure 6(a) that perturbations with small axial wavenumbers α

grow quickly starting from t = 0.001. In fact, the energy growth beyond t =0.001
becomes more pronounced for perturbations with longer wavelength along the
streamwise direction (i.e. waves with small α). The linear growth of ŵ is induced
by the tilting of vorticity by the radial component of the velocity perturbation.
The transition to turbulence was observed experimentally at t =0.0032. Figure 6(a)
shows that the energy of the least stable mode (n= 1 and α = 0) increases tenfold
at t =0.0032. In addition, the energy of perturbations that is weakly dependent on
the streamwise direction (e.g. energy curve for α = 0.05) also experiences significant
growth between t̂ =0.001 and t̂ = 0.0032. It is plausible to assume that the transient
growth is responsible for the transition to turbulence in this case.

Similar calculations are performed for different randomly distributed initial condi-
tions. It is found that for some sets of random initial conditions there is no pertur-
bation growth whereas other random initial conditions show growth behaviour
qualitatively similar to the Bergström initial condition. One case of a random initial
condition which leads to energy growth of the perturbation is illustrated in figure 6(b).
Comparing the graphs in figures 6(a) and 6(b), we can see qualitatively similar
behaviour of growth curves after t = 0.001. Despite the fact that the perturbation
with random initial condition and small axial wavenumber initially decays, it starts to
grow after t =0.001 in a similar way to the case with the Bergström initial condition.
At t = 0.0032, the perturbation associated with the most unstable mode grows sixfold.

Figure 7 shows the growth of perturbations for another case (Lefebvre & White
1989; Case 2); similar behaviour to the previous case is revealed. The Reynolds
number based on the final mean velocity and diameter is 5.2 × 105, and the measured
transition time t is about 0.00105.

The amplitudes of optimal initial perturbations and the corresponding growth
curves for optimal perturbations are shown in figures 8 and 9 for experimental
Cases 1 and 2 in Lefebvre & White (1989), respectively, where the optimization is
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Figure 8. (a) Amplitudes of optimal initial perturbation as a function of r which maximize
G at t̂ = 0.0032. (b) Transient growth for the optimal perturbation for accelerated flow
(Lefebvre & White 1989; Case 1, ReD = 2.4 × 105) (α =0).

0.0002 0.0004 0.0006 0.0008 0.0010
t

0 0.25 0.50 0.75 1.00
r

0

0.2

0.4

0.8

1.0 (a) (b)

A
m

pl
it

ud
es

 o
f 

pe
rt

ur
ba

ti
on

0

10

20

30

40

50

60

70
E

(t
)/

E
(0

)0.6

û
v
w
ˆ
ˆ

ˆ

Figure 9. (a) Amplitudes of optimal initial perturbation as a function of r which maximize
G at t̂ = 0.0013. (b) Transient growth for the optimal perturbation for accelerated flow
(Lefebvre & White 1989; Case 2, ReD = 5.2 × 105) (α =0).

performed at time t = 0.0032 for Case 1 and t = 0.0013 for Case 2. In both cases, the
corresponding wavenumber of the perturbation is that of the most unstable mode.
Comparing figures 6 and 7 for different initial conditions with the corresponding
graphs in figures 8 and 9, we can see that, as in the case of accelerated flow,
the qualitative behaviour of the growth curves for arbitrary initial perturbations and
optimal initial perturbations is similar. The only important difference is the magnitude
of the growth.

The above results show that the largest growth rate occurs when the perturbations
are independent of the streamwise coordinate (i.e. α = 0). Ellingsen & Palm (1975)
investigated the behaviour of perturbations that are independent of the streamwise
coordinate (i.e. α =0). They found that the streamwise perturbations and the kinetic
energy of these perturbations grows linearly with time, even when the base flow
does not contain inflection points. A similar derivation can be performed here.
In particular, considering perturbations that are independent of the streamwise
coordinate (i.e. α = 0) and since this is a high-Reynolds-number flow reduces (8) and



Perturbation dynamics in unsteady pipe flows 143

0 0.1 0.2 0.3
t̂

10–10

10–8

10–6

10–4

10–2

100

102

104

106

E
(t̂

)/
E

(0
)

α = 0

2

Bergström Initial condition

Figure 10. Long-time behaviour of growth of perturbation.

(10) to û ≈ constant with respect to time and ŵ =w0 − t û(∂W/∂r). Indeed, figures 6
and 7 show that the energy grows the most when α =0 and that this growth becomes
linear in time for large t . The instability associated with small values of α manifests
itself in the form of streaks oriented in the streamwise direction (Butler & Farrel 1992).

The long-term behaviour of energy growth of perturbations for Case 1 in Lefebvre &
White (1989) is shown for α = 0 and α =2 in figure 10. It is seen from the figure that,
for large times, the perturbations in the flow accelerated from rest asymptotically
decay. A quasi-steady assumption is also used in order to study linear stability of flow
accelerated from rest. Linear stability calculations are performed for different values
of the Reynolds number. Numerical results indicate that the flow is linearly stable
(the detailed results are not shown here) in the range of Reynolds numbers reported
by Lefebvre & White (1989).

The method of normal modes together with the quasi-steady assumption (which
assumes that the mean velocity profiles are ‘frozen’) is often used in stability studies
of unsteady non-periodic viscous flows. Perturbation energy decay for large times
corresponds to linear stability of the base flow since the growth rate is negative in this
case. This means, in particular, that the transition in the case of pipe flows accelerated
from rest cannot be explained by the exponential growth of a mode.

3.2. Flow stability of decelerated flows

Decelerated flows studied by Das & Arakeri (1998) have different features from the
accelerated flows studied by Lefebvre & White (1989). The obvious difference between
the base flows in figure 1 and that in figure 2 is the presence of inflection points in
the velocity profiles in figure 2.

Das & Arakeri (1998) used a dye-visualization method to observe how the flow
becomes unstable. For this purpose, the time t̃ p when the dye line takes the form of a
wave (in other words, the time when a perceptible wave appears) is measured. Energy
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growth curves of perturbations in decelerated flows (Cases I–IV for the experiments of
Das & Arakeri 1998) are plotted in figure 11. The solid curves in figure 11 represent the
sample average (25 random initial conditions are used). The corresponding graphs for
optimal perturbations are also shown in these figures. As can be seen from the graphs,
all four solid curves exhibit a similar behaviour: initial energy decay is followed by
energy growth at larger times. A possible reason for the decay is that the initial
condition includes many modes, most of them decay with time. The energy begins to
grow after a certain time since at that time the perturbation contains a few unstable
modes. Note that the perturbation growth for each case is associated with critical
wavenumber and is calculated until the perturbation is found to be perceptible in the
experiments. The critical wavenumber is the wavenumber at which, for a particular
initial condition, the maximum growth is obtained at the perceptible time. The same
approach is used by Chen & Kirchner (1971) to determine the fastest-growing wave.
Note that different initial conditions might give different critical wavenumbers so that
the results obtained from different random initial conditions are averaged. In all the
examples, fewer than 40 samples are used for each case. The non-dimensional critical
wavenumbers are given in the last column of table 2.
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Case (λ/δ∗)exp (λmax/δ∗)DA (λmax/δ∗)GK (λmax/δ∗) α

I 3.2 4.0 3.7 3.8 1.77
II 2.7 4.2 2.8 3.0 2.65

III 3.1 5.0 2.7 3.3 3.37
IV 3.0 3.3 2.6 2.5 5.50

Table 2. Scaled wavelengths and critical wavenumbers, where experimental data are
represented by the subscript ‘exp’, the results of Das & Arakeri (1998) are represented by
the subscript ‘DA’, the calculations by Ghidaoui & Kolyshkin (2002) are represented by the
subscript ‘GK’, λ= wavelength; δ∗ = average boundary-layer thickness taken over the time t̃1
to t̃ p; subscript ‘max’ means that the wavelength corresponds to maximum growth rate in ‘DA’
and ‘GK’ and the maximum energy growth in the present model.
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Figure 12. Energy growth for different initial conditions for Case II (α =2.65, n= 1).

Figure 12 shows energy growth curves for optimal perturbations and two different
random initial conditions (referred to as ‘initial condition 1’ and ‘initial condition 2’
in the remaining part of the paper). The energy growth evolution is calculated for
α = 2.65 and n= 1. It is seen from the graph that before t = 60, the energy growth
depends on the initial condition. However, after t = 60, all three curves are parallel
to each other in the semi-log plot, which means that the same growth rates are
achieved. To shed light on this behaviour of the perturbations, the flow structure at
t = 50 and t = 78 is investigated. It is seen from the contour plots of radial vorticity
(ζr = (1/r)(∂w/∂θ) − (∂v/∂z)) in figure 13 at t = 50 that the contour patterns for
different random initial conditions are totally different. This is because, for random
initial condition 2 at t =50, the perturbation is not yet organized whereas for random
initial condition 1, the pattern appears to be more or less regular. At t =78, the contour
plots for different random initial conditions are very similar, the only difference being



146 M. Zhao, M. S. Ghidaoui and A. A. Kolyshkin

1.28 × 10–8

2.14 × 10–8

–1.28 × 10–5

5.39 × 10–7

8.99 × 10
–7

1.80 × 10
–7

–1.0

–0.5

0

0.5

1.0

–1.0 –0.5 0 0.5 1.0

2.05 × 10 –7

6.14 × 10 –7 1.02 × 10 –6

–1.0

–0.5

0.5

1.0

–1.0 –0.5 0 0.5 1.0

–1.0

–0.5

0

0

0

0.5

1.0

–1.0 –0.5 0 0.5 1.0

–1.0

–0.5

0.5

1.0

–1.0 –0.5 0 0.5 1.0

(a) (b)

(c) (d)

Figure 13. Vorticity contours at different times for different initial conditions for Case II
(α = 2.65, n= 1). (a) t = 50, random initial condition 1; (b) t = 50, random initial condition 2;
(c) t = 78, random initial condition 1; (d) t = 78, random initial condition 2.

that the magnitude of the vorticity for random initial condition 1 is a little larger
than that for random initial condition 2. The contour plots correspond to the most
unstable mode. Figures 12 and 13 show that it takes different times for the system to
pick up the most unstable mode from different random initial conditions.

The streamwise velocity level surfaces of equal magnitudes but opposite signs for
the perturbation at the critical wavenumber are given in figure 14. The dark and light
parts of the graph in figure 14 correspond to large negative and positive streamwise
velocity level surfaces, respectively. It is clear that the positive and negative velocity
surfaces ‘twist’ together along the streamwise direction in a helical manner. Note that
helical mode of disturbance is found to be the most unstable for Case II in Das &
Arakeri (1998). The phase difference between the bottom and top vortices in their
experiments was about 180◦. In § 3.3, we shall use our model in an attempt to explain
some of the experimental results obtained of Das & Arakeri (1998) for unsteady flows
generated by the motion of a piston.

In all the four cases considered, Das & Arakeri (1998) observed that the instability
was associated with the formation of a periodic array of vortices. It was found that
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Figure 14. Level surface for the streamwise velocity perturbation for Case II
(α = 2.65, n= 1).

the spacing between the vortices, the time of their formation and their ‘fate’ depends
on the experimental conditions. In particular, Das & Arakeri (1998) reported that
there was no breakdown of vortices in Cases I and IV while in Cases II and III
they observed vortex breakdown and rapid transition to turbulence. The evolution
of energy growth is used here in an attempt to explain the different behaviours of
vortices in the experiments. The procedure we used in the analysis was as follows.
The energy growth for each case was calculated for the critical wavenumber which
was found from the data in table 2. The initial conditions for û, v̂, ŵ were specified as
described before. For each of the four cases, the growth rates for two different random
initial perturbations are shown in figure 18. The integral

∫ ts

tp
GE dt is calculated, where

ts is the time at which the growth rate becomes zero (in other words, at t = ts the
perturbation stops growing), and tp is obtained from the experimental observations
of Das & Arakeri (1998). The magnitude of the integral is used in an attempt to
decide whether vortex breakdown is possible. Note that using (15), we can easily show
that the value of the integral is ln E(ts) − lnE(tp) = ln[E(ts)/E(tp)]. In other words,
the magnitude of the integral is directly related to energy amplification factor in the
interval (tp, ts).

The energy curves for Cases I to IV are plotted in figures 15(a) to 15(d), respectively.
The hashed areas in these figures define the net gain in energy by the perturbations
from time tp to ts . The calculations show that the net gains of kinetic energy by the
perturbations from time tp to ts for Cases I, II, III and IV are 0.07, 4.7, 16.3 and 2.4 (see
table 3). These values indicate that Case III has the highest potential for flow transition
followed by Cases II, IV and I. This is consistent with the experimental findings of
Das & Arakeri (1998) who reported that there was no breakdown of vortices in
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Case tp ts Area

I 80 86 0.07 No turbulence
II 78 149 4.7 Turbulence

III 72 195 16.3 Turbulence
IV 47 87 2.4 No turbulence

Table 3. Integrals of positive growth rates after perceptible time.
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Figure 15. Growth rates of perturbations for decelerated flows (Das & Arakeri 1998).
(a) Case I (α = 1.77, n= 1), (b) Case II (α =2.65, n= 1), (c) Case III (α = 3.37, n= 1),
(d) Case IV (α = 5.50, n= 1).

Cases I and IV whereas in Cases II and III they observed vortex breakdown and
rapid transition to turbulence. It must be stressed that although transient growth
constitutes a necessary condition for transition and the magnitude of this growth
defines the likelihood of transition, a complete understanding of the transition from
laminar to turbulent flows necessitates nonlinear analysis.

3.3. Quasi-steady assumption for transient decelerated flows

As has been shown earlier, linear stability analysis based on asymptotical growth
for flows accelerated from rest totally fails to predict any perturbation growth and
thus cannot be used to explain transition. However, it is found that for rapidly
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Figure 16. (a) Growth rates obtained from L-DNS and quasi-steady assumption and
(b) velocity profiles for water hammer flow (Re=2000, α = 1.5, n= 1).

decelerated unsteady flows, large perturbation growth is associated with asymptotic
energy growth. When the transition is not due to transient growth, the quasi-steady
assumption might be used to predict the asymptotic growth rate. It is shown by Hall
& Parker (1976) that the quasi-steady assumption works well asymptotically for large
Reynolds numbers. In particular, Hall & Parker (1976) have shown that the difference
between the growth rates with and without the quasi-steady assumption is of the order
of 1/Re. Here, L-DNS numerical calculations are performed in order to establish the
limits of applicability of high-Reynolds-number theory. For a typical water hammer
event where the steady flow is fully blocked by a valve closure, the initial velocity
profile is instantaneously shifted by an amount which is equal to the mean of the
undisturbed flow so that the mean flow after a pressure wave passage becomes zero.
Examples of the velocity profiles corresponding to this case are plotted in figure 16(b).
A vortex sheet is generated at the pipe wall and it starts to diffuse away from the
pipe wall to the centreline. The asymptotic behaviour of perturbations is believed to
be associated with the presence of the inflection point in the velocity profile. At the
inflection point, where the velocity gradient has the maximum value, the perturbation
velocity extracts energy from the base flow shear. This procedure provides energy for
the perturbation. The rate of energy production depends on the velocity gradient.
When the velocity gradient is changed, the rate of energy production also changes.
This change possibly affects the growth rate of perturbation. If the change of base
flow velocity gradient is slow compared with the growth rate of perturbation, then
a quasi-steady assumption may be used since the calculated growth rates with and
without the quasi-steady assumption will be close to each other.

This is illustrated in figure 16(a). In this figure, the growth rates for water hammer
flow (3) with Re = 2000 at α = 1.5, n =1 are plotted. L-DNS calculations are shown
by the solid lines and the dots represent the growth rates obtained with the quasi-
steady assumption. For t < 40, the L-DNS results correspond to transient growth
rate, which cannot be captured by the method of normal modes with the quasi-steady
assumption. After t > 40, the agreement between the results from L-DNS and the
method of normal modes is good. That is, asymptotic high-Reynolds-number theory
works well for this case.
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Figure 17. Growth rates obtained from L-DNS and method of normal modes for deceleration
flows (Das & Arakeri 1998). (a) Case I (α =1.77, n= 1), (b) Case II (α =2.65, n= 1), (c) Case III
(α = 3.37, n= 1), (d) Case IV (α = 5.50, n= 1).

The quasi-steady assumption for other transient flow cases, such as the experimental
tests (Case I–Case IV) reported by Das & Arakeri (1998), is also studied. The growth
rates obtained from L-DNS and the method of normal modes with the quasi-steady
assumption are plotted in figure 17. The graphs show some disagreement between
L-DNS and the method of normal modes in the initial stage, but the agreement
between the results from two models is acceptable for larger times, specially after
the time the perturbation is found to be perceptible in experiments. This supports
the conclusion that the quasi-steady assumption is justified for the flow studied by
Das & Arakeri (1998). Note that a characteristic feature of rapidly decelerated flows
in Hall & Parker (1976) and Das & Aarakeri (1998) is the presence of an inflection
point in the velocity profile. It is well known that inflectional instability is important
in the description of stability characteristics of steady flows. For truly unsteady flows,
however, the instability associated with inflection points in the velocity profile may
not be the only mechanism which affects the transition. On the other hand, different
stability characterictics of accelerated flows (with no inflection points) and decelerated
flows (with inflection points) discussed above show that an inflectional instability may
play an important role also in unsteady flows.
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Figure 18. Growth rates obtained from L-DNS and quasi-steady assumption for water
hammer flow (Re= 200, α = 1.8, n= 1).

The growth rates for water hammer flow (3) with Re = 200 are plotted in figure 18.
Obviously, the quasi-steady assumption is not good in this case. Note also that the
values of Re in table 1 represent the magnitude of the Reynolds number in the
beginning of the deceleration phase. During deceleration (see Hall & Parker 1976;
Ghidaoui & Kolyshkin 2002) the critical values of Re decrease considerably and are
of order 200 (as reported by Hall & Parker 1976 for the case of a planar channel)
and of order 300 for Case I (as reported by Ghidaoui & Kolyshkin 2002). As a result,
the quasi-steady assumption, which assumes that the base flow velocity is fixed, may
not be justified in these cases. Therefore, although asymptotic theory predicts that the
quasi-steady assumption is justified for large Reynolds numbers when the base flow is
of an inflectional nature, transient growth analysis is required in order to define what
would be considered as a ‘large Reynolds number’. For example, it is clear that Das &
Arakeri (1998) and Ghidaoui & Kolyshkin (2002) erroneously considered a Reynolds
number of the order of 200 to 300 to be large enough to justify the quasi-steady
assumption for decelerating pipe flows.

4. Conclusions
The full temporal dynamics of linearized perturbations in unsteady rapidly acc-

elerating and decelerating laminar flows in pipes is analysed in the present paper.
Three types of unsteady base flows are considered: the flow accelerated from rest
(Lefebvre & White 1989), the flow in a pipe–piston system which is generated by the
controlled motion of the piston reported by Das & Arakeri (1998), and the water
hammer flow which is obtained as a result of an instantaneous closure of the valve.
The base flows in all three cases are unsteady and non-periodic.

Methods of linear stability theory are used to analyse the evolution of small
perturbations in the fluid system. The Navier–Stokes equations are linearized in the
neighbourhood of the base flow, Fourier decomposition is used in the azimuthal
and longitudinal directions and the resulting system of partial differential equations
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(where the independent variables are time and the radial coordinate) is solved as an
initial-value problem. In contrast to the standard method of normal modes which is
widely used in stability studies of steady laminar flows, the present approach allows
us to trace the evolution of any small three-dimensional perturbation by specifying
an arbitrary initial form of a perturbation. The energy growth function is used to
analyse the temporal dynamics of perturbations.

The model is applied to the analysis of both short-time and long-time behaviour
of the flow. It is found that during short-time transient growth, the initial conditions
play an essential role in the development of instability. Uncorrelated random initial
conditions are used in order to model perturbations which occur in the natural
environment. The results for different samples are averaged and these averaged
results are then compared with the experimental data of Lefebvre & White (1989)
and Das & Arakeri (1998). The use of different random initial conditions and optimal
initial conditions also shows that transient growth is not associated with a particular
type of initial condition. The analysis of long-term asymptotics shows that for large
times, the dependence of the growth rates on the initial condition disappears and
different initial conditions give the same growth rates.

The results of numerical simulation for the case of flows accelerated from rest are
compared with the experimental data in Lefebvre & White (1989). It is shown that
transition cannot be explained by asymptotic growth – the growth rates for large
time are all negative, indicating a linear stability of the flow. Hence, the method
of normal modes in conjunction with the quasi-steady assumption will also fail to
predict instability. However, perturbations experience large transient growth during
short time after acceleration starts. The agreement between the time interval for
which perturbations continue to grow and the time when instability is observed
experimentally is good (the experimental transition time is found to be in the interval
where perturbation energy increases substantially). However, computational results
are obtained only for modes with fixed wavenumbers and, therefore, caution is
needed when these results are compared with experimental data. On the other hand,
calculations indicate that a transient growth mechanism may play an important role
in the development of instability for flows accelerated from rest.

Numerical results are also compared with experimental findings reported by Das &
Arakeri (1998). Using time t̃ p , when a perceptible wave appeared in the experiments,
as the critical time for the instability to set in, we determined the critical wavenumber
as the average (over several samples) of the wavenumbers at which the maximum
growth is obtained at time t̃ = t̃ p . This critical wavenumber is then used to evaluate
the wavelength of the most unstable mode. Reasonable agreement is found between
theoretical estimates and experimental data. An attempt is made to use the evolution
of energy growth to explain why, in some cases, primary vortices (the result of primary
instability) break down, but in other cases there is no breakdown. Das & Arakeri
(1998) observed transition to turbulence in their experiments in two cases out of four.
Using the model predictions, we calculated the integral of the growth rate over the time
interval (tp, ts), where ts is the (dimensionless) time at which the growth rate becomes
equal to zero. It is shown that if the integral is large enough, the flow had sufficient
time for the perturbation to develop and as a result, vortex breakdown was observed.

The results of simulation are also used to analyse the structure of a perturbation.
Analysis of vorticity contours for different initial conditions shows that a certain
time is required for the perturbation to form a more or less organized structure. It
is found that the structure of the most unstable perturbation is consistent with the
observations of Das & Arakeri (1998).
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The quasi-steady assumption, which is widely used in stability studies of unsteady
laminar non-periodic flow, is analysed. The idea behind the quasi-steady assumption
is that the base flow velocity profiles are assumed to be ‘frozen’ in time so that the
stability characteristics are calculated for a fixed velocity profile where time, which
the base flow depends on, is considered as a parameter. The analysis of the validity
of the quasi-steady assumption is performed for four experimental cases reported by
Das & Arakeri (1998). It is found that in all four cases the agreement between the
calculated growth rates with and without the quasi-steady assumption is satisfactory.
However, the accuracy of the quasi-steady assumption is better for higher Reynolds
numbers.

Optimal perturbations are also considered for all three types of flow investigated
here. The optimal growth curves show the upper limit of the energy growth and,
therefore, can be used to assess the possibility of the bypass transition scenario.
The results presented above show that the qualitative behaviour of optimal growth
curves is similar to the behaviour of the growth curves for arbitrary initial conditions.
However, the magnitude of the optimal growth is found to be considerably larger
than the corresponding magnitudes for the initial conditions studied in the paper.
This agrees with the numerical results of Criminale et al. (1997) where it is shown that
the calculated transient growth for arbitrary initial conditions for two-dimensional
perturbations in plane Poiseuille flow is found to be about 25 % of the optimal.

We wish to thank the Research Grant Council of Hong Kong for financial support
under projects HKUST6179/02E and HKUST6113/03E.

REFERENCES

Ben-Dov, G., Levinski, V. & Cohen, J. 2003 On the mechanism of optimal disturbances: the role
of a pair of nearly parallel modes. Phys. Fluids 15, 1961–1972.

Bergström, L. 1992 Initial algebraic growth of small angular dependent disturbances in pipe
Poiseuille flow. Stud. Appl. Maths 87, 61–79.

Bergström, L. 1993 Optimal growth of small disturbances in pipe Poiseuille flow. Phys. Fluids A
5, 2710–2720.

Brunone, B., Karney, B., Mecarelli, M. & Ferrante, M. 2000 Velocity profiles and unsteady pipe
friction in transient flow. J. Water Resources Planning and Management, ASCE 126, 236–244.

Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear
flow. Phys. Fluids A 4 (8), 1637–1650.

Chen C. F. & Kirchner, R. P. 1971 Stability of time-dependent rotational Couette flow. Part 2.
Stability analysis. J. Fluid Mech. 48, 365–384.

Corbett, P. & Bottaro, A. 2000 Optimal perturbations for boundary layers subject to streamwise
pressure gradient. Phys. Fluids 12, 120–130.

Criminale, W. O., Jackson, T. L., Lasseigne, D. G. & Joslin, R. D. 1997 Perturbation dynamics
in viscous channel flows. J. Fluid Mech. 339, 55–75.

Das, D. & Arakeri, J. H. 1998 Transition of unsteady velocity profiles with reverse flow. J. Fluid
Mech. 374, 251–283.

Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487–488.

Ghidaoui, M. S. & Kolyshkin, A. A. 2001 Stability analysis of velocity profiles in water-hammer
flows. J. Hydraul. Engng ASCE 127, 499–512.

Ghidaoui, M. S. & Kolyshkin, A. A. 2002 A quasi-steady approach to the instability of time-
dependent flows in pipes. J. Fluid Mech. 465, 301–330.

Greenblatt, D. & Moss, E. A. 2003 Rapid transition to turbulence in pipe flows accelerated from
rest. J. Fluids Engng 125, 1072–1075.

Gromeka, I. S. 1882 On the theory of fluid motion in narrow cylindrical pipes. Kazan University
Research Notes, 32 pp. (In Russian).



154 M. Zhao, M. S. Ghidaoui and A. A. Kolyshkin

Hall, P. 1975 The stability of Poiseuille flow modulated at high frequencies. Proc. R. Soc. Lond. A
465, 453–464.

Hall, P. & Parker, K. H. 1976 The stability of the decaying flow in a suddenly blocked channel
flow. J. Fluid Mech. 75, 305–314.

Henningson, D. S. & Reddy, S. C. 1994 On the role of linear mechanisms in transition to turbulence.
Phys. Fluids 6 (3), 1396–1398.

Hino, M., Sawamoto, M. & Takasu, S. 1976 Experiments on transition to turbulence in an
oscillatory pipe flow. J. Fluid Mech. 75, 193–207.

Joseph, D. D. 1976 Stability of Fluid Motion I. Springer.

von Kerczek, C. 1982 The stability of oscillatory plane Poiseuille flow. J. Fluid Mech. 116, 91–114.

Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid
Mech. 98, 243–251.

Lasseigne, D. G., Joslin, R. D., Jackson, T. L. & Criminale, W. O. 1999 The transient period for
boundary layer disturbances. J. Fluid Mech. 381, 89–119.

Lefebvre, P. J. & White, F. M. 1989 Experiments on transition to turbulence in a constant-
acceleration pipe flow. J. Fluids Engng 124, 236–240.

Levin, O. & Henningson, D. S. 2003 Exponential vs algebraic growth and transition prediction in
boundary layer flow. Flow Turbulence Combust. 70, 183–210.

Lopez, J. M., Marques, F. & Shen, J. 2002 An efficient spectral-projection method for the Navier–
Stokes equations in cylindrical geometries II. Three-dimensional cases. J. Comput. Phys. 176,
384–401.

Moin, P. & Kim, J. 1980 On the numerical solution of time-dependent viscous incompressible fluid
flows involving solid boundaries. J. Comput. Phys. 35, 381–392.

Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech.
252, 209–238.

Schlichting, H. 1979 Boundary-Layer Theory. McGraw–Hill.

Schmid, P. J. 2000 Linear stability theory and bypass transition in shear flows. Phys. Plasmas 7,
1788–1794.

Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen–Poiseuille flow.
J. Fluid Mech. 277, 195–225.

Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.

Szymanski, P. 1932 Some exact solutions of the hydrodynamic equations of a viscous fluid in the
case of a cylindrical tube. J. Math. Pures Appl. 11, 67–107.

Vanderplaats Research & Development 2000 DOT Manual. Colorado.

Waters, S. L. & Pedley, T. J. 1999 Oscillatory flow in a tube of time-dependent curvature. Part 1.
Perturbation to flow in a stationary curved tube. J. Fluid Mech. 383, 327–352.

Wylie, E. B. & Streeter, V. L. 1993 Fluid Transient in Systems, Prentice–Hall.

Yang, W. H. & Yih, C. S. 1977 Stability of time-periodic flows in a circular pipe. J. Fluid Mech. 82,
497–505.

Zhao, M., Ghidaoui, M. S. & Kolyshkin, A. A. 2004 Investigation of the mechanisms responsible
for the breakdown of axisymmetry in pipe transient. J. Hydraul. Res. 42, 645–656.


